Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Neven Strukan,* Marina Cindrić and Boris Kamenar

Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. Kralja Zvonimira 8, PO Box 153, HR-10000 Zagreb, Croatia
Correspondence e-mail: nstrukan@chem.pmf.hr

Received 4 August 1999
Accepted 11 February 2000
The crystal and molecular structure of dipotassium di- μ-oxo-bis[aqua(oxalato- O^{1}, O^{2}) oxomolybdenum(III)] trihydrate, $\mathrm{K}_{2^{-}}$ $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, has been determined from Xray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo-O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water molecule. Bond lengths trans to the multiple-bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.

Comment

Although the trans repulsive influence of the terminal oxo ligand is generally accepted (Spivack \& Dori, 1975), there are a few structural examples in which such an influence is not observed. In particular, it has been emphasized that the oxalato complexes of molybdenum(V), e.g. $\mathrm{Ba}\left[\mathrm{Mo}_{2} \mathrm{O}_{4}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Cotton \& Morehouse, 1965) and $\mathrm{Cs}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (McDonald, 1978), do not show any lengthening of the bonds trans to the oxo ligand. However, redetermination of the structure of the barium salt and the determination of $\mathrm{Cs}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Kamenar et al., 1991) and $\mathrm{H}(\mathrm{pyH})_{3}\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$.$2 \mathrm{H}_{2} \mathrm{O}$ (Rongsheng \& Xiufen, 1985; py = pyridine) show that in all oxalato complexes in which two octahedrally coordinated Mo atoms are doubly bridged through two O atoms there is an obvious trans influence of the terminal oxo-O atom. In order to provide additional experimental support for the trans repulsive influence of the terminal oxo group, the title

(I)
complex, (I), has been prepared and structurally characterized and the results are presented here.

Figure 1
View of the anion of (I) showing the atom-labelling scheme for one of the crystallographically independent anions. The other independent anions have essentially the same features and analogous labelling schemes. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

The crystal structure of (I), with four molecules in the asymmetric unit, is built up of K^{+}cations, binuclear $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ anions and water molecules. Complex anions 1 and 2, as well as 3 and 4 , are related by a pseudo-translation of $a / 2$ along the x axis. However, the K^{+} cations and the water molecules are not related in this way. In

Figure 2
View of the unit cell of (I) along (a) the a axis and (b) the c axis.
each binuclear anion with local $C 2$ symmetry (Fig. 1), two Mo atoms are coordinated in a distorted octahedral environment by one terminal oxo ligand, two bridging O atoms, two oxalato O atoms and one O atom from the water molecule. The $\mathrm{Mo}-$ O distances, as already observed, indicate their dependence upon their position in the structure, i.e. cis or trans to the terminal or bridging O atoms. Bond lengths to the terminal O atom ($\mathrm{Mo}-\mathrm{O}_{t}$) vary from 1.669 (5) to 1.688 (5) \AA (average $1.678 \AA$), while bond lengths to the bridging O atoms ($\mathrm{Mo}-$ O_{b}) vary from 1.916 (5) to 1.958 (4) \AA (average $1.938 \AA$). The $\mathrm{Mo}-\mathrm{O}_{\text {oxalato }}$ bond lengths trans to the terminal O atom, which range from 2.192 (5) to 2.250 (5) \AA (average $2.227 \AA$), are significantly longer than the $\mathrm{Mo}-\mathrm{O}_{\text {oxalato }}$ bonds cis to the terminal O atom, which range from 2.132 (5) to 2.166 (5) \AA (average $2.151 \AA$), thus showing the trans influence of the terminal oxo ligand. The bond lengths involving the O atoms of the water molecules range from 2.115 (5) to 2.185 (5) \AA (average $2.144 \AA$). The Mo-Mo distances, which range from 2.5627 (9) to 2.5695 (10) A , correspond to a single bond between metal atoms (Cotton, 1965, 1977). The coordination octahedra are significantly distorted, with the angles at the metal atoms ranging from 71.98 (19) to 109.6 (2) ${ }^{\circ}$.

The K^{+}cations are irregularly and differently surrounded by 8-11 O atoms from the complex anions and water molecules at distances of between 2.608 (6) and 3.419 (7) \AA. The K1 and K2 cations and water molecules OW2 and OW4 are positioned within the channel along the a axis which is formed by the terminal O atoms of anions facing each other (Fig. 2). The remaining cations and water molecules in the ac plane separate the layers of negatively charged anions. The distances listed in Table 2 show that all H atoms from the water molecules participate in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between binuclear anions and water molecules, thus additionally stabilizing the crystal structure.

Table 1
Selected geometric parameters (\AA).

Mo11-O11	$1.679(5)$	Mo31-O31	$1.675(5)$
Mo11-O17	$1.922(5)$	Mo31-O38	$1.944(5)$
Mo11-O18	$1.958(4)$	Mo31-O37	$1.946(5)$
Mo11-O114	$2.117(5)$	Mo31-O314	$2.129(5)$
Mo11-O15	$2.155(5)$	Mo31-O35	$2.149(5)$
Mo11-O13	$2.235(5)$	Mo31-O33	$2.245(5)$
Mo11-Mo12	$2.5686(10)$	Mo31-Mo32	$2.5635(10)$
Mo12-O12	$1.674(5)$	Mo32-O32	$1.672(5)$
Mo12-O18	$1.924(5)$	Mo32-O37	$1.916(5)$
Mo12-O17	$1.941(5)$	Mo32-O38	$1.935(5)$
Mo12-O113	$2.145(4)$	Mo32-O36	$2.132(5)$
Mo12-O16	$2.148(5)$	Mo32-O313	$2.172(5)$
Mo12-O14	$2.212(5)$	Mo32-O34	$2.220(5)$
Mo21-O21	$1.669(5)$	Mo41-O41	$1.678(5)$
Mo21-O27	$1.940(5)$	Mo41-O48	$1.939(5)$
Mo21-O28	$1.955(4)$	Mo41-O47	$1.953(5)$
Mo21-O25	$2.140(5)$	Mo41-O414	$2.115(5)$
Mo21-O214	$2.142(5)$	Mo41-O45	$2.166(5)$
Mo21-O23	$2.250(5)$	Mo41-O43	$2.241(5)$
Mo21-Mo22	$2.5627(9)$	Mo41-Mo42	$2.5695(10)$
Mo22-O22	$1.686(5)$	Mo42-O42	$1.688(5)$
Mo22-O28	$1.924(5)$	Mo42-O47	$1.930(4)$
Mo22-O27	$1.936(4)$	Mo42-O48	$1.943(4)$
Mo22-O26	$2.155(5)$	Mo42-O413	$2.146(5)$
Mo22-O213	$2.185(5)$	Mo42-O46	$2.160(5)$
Mo22-O24	$2.192(5)$	Mo42-O44	$2.217(5)$

Experimental

The title complex was prepared from a mixture of $\mathrm{Ba}\left[\mathrm{Mo}_{2} \mathrm{O}_{4}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(1.00 \mathrm{~g}\right.$; James \& Wardlaw, 1928) and $\mathrm{K}_{2} \mathrm{SO}_{4}$ $(0.25 \mathrm{~g})$ dissolved in water $(5 \mathrm{ml})$ and heated. The precipitated BaSO_{4} was filtered off and the resulting orange-red solution was left at room temperature. After two days, transparent red crystals of (I) were isolated.

Crystal data

$\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$Z=8$
$M_{r}=600.20$	$D_{x}=2.523 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo K α radiation
$a=12.2683(10) \AA$	Cell parameters from 30
$b=15.0622(17) \AA$	reflections
$c=18.2824(17) \AA$	$\theta=8-17^{\circ}$
$\alpha=81.818(9)^{\circ}$	$\mu=2.20 \mathrm{~mm}^{-1}$
$\beta=71.050(7)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=85.001(9)^{\circ}$	Prism, red
$V=3159.7(5) \AA^{\circ}$	$0.30 \times 0.27 \times 0.25 \mathrm{~mm}$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O113-H11 . O 27	0.69	2.02	2.683 (6)	163
O113-H12 \cdots O310 ${ }^{\text {i }}$	0.94	1.68	2.615 (7)	173
O114-H13 . . O311	0.86	1.72	2.566 (7)	165
$\mathrm{O} 114-\mathrm{H} 14 \cdots \mathrm{O} 28^{\text {iii }}$	0.89	1.80	2.632 (7)	155
$\mathrm{O} 213-\mathrm{H} 21 \cdots \mathrm{O} 17^{\text {iii }}$	0.77	1.98	2.740 (6)	170
O213-H22 \cdots O $410^{\text {iv }}$	0.98	1.65	2.612 (7)	168
$\mathrm{O} 214-\mathrm{H} 23 \cdots \mathrm{O} 412^{\text {iii }}$	0.90	1.72	2.610 (8)	170
O214-H24 $\cdots \mathrm{O} 18$	0.87	1.88	2.686 (6)	154
O313-H31 \cdots O 48	0.95	2.04	2.692 (7)	124
O313-H31 \cdots O37	0.95	2.39	2.865 (7)	111
	1.26	2.15	3.012 (8)	122
O314-H33 \cdots O47 ${ }^{\text {iii }}$	0.85	1.80	2.616 (7)	160
O314-H34 . ${ }^{\text {O }} 212{ }^{\text {vi }}$	0.93	1.74	2.630 (7)	158
O413-H41 . O $1110^{\text {ii }}$	0.81	1.81	2.589 (7)	164
$\mathrm{O} 413-\mathrm{H} 42 \cdots \mathrm{O} 38^{\text {ii }}$	0.78	1.92	2.633 (6)	153
O414-H43 $\cdots \mathrm{O}^{\text {O }} 111^{\text {vi }}$	0.75	1.87	2.598 (8)	163
O414-H44...O37	0.78	1.93	2.650 (7)	153
$\mathrm{OW} 1-\mathrm{H} 1 A \cdots \mathrm{O} 23^{\text {vii }}$	1.20	2.02	2.912 (8)	128
$\mathrm{OW} 1-\mathrm{H} 1 A \cdots \mathrm{O} 29^{\text {vii }}$	1.20	2.02	3.192 (8)	165
$\mathrm{O} W 1-\mathrm{H} 1 B \cdots \mathrm{O} 24^{\text {vii }}$	1.03	2.15	2.913 (7)	129
$\mathrm{OW} 1-\mathrm{H} 1 B \cdots \mathrm{O} 211^{\text {vii }}$	1.03	2.36	2.886 (8)	111
$\mathrm{OW} 2-\mathrm{H} 2 A \cdots \mathrm{O} 46$	0.93	2.44	3.025 (10)	121
$\mathrm{O} W 2-\mathrm{H} 2 B \cdots \mathrm{O} 16^{\text {viii }}$	1.01	2.35	3.013 (9)	123
OW3-H3A \cdots O311	1.12	1.76	2.775 (8)	149
$\mathrm{OW} 3-\mathrm{H} 3 B \cdots \mathrm{O} 211^{\text {vii }}$	1.28	1.79	3.050 (8)	168
$\mathrm{OW} 4-\mathrm{H} 4 A \cdots \mathrm{O} 26$	1.11	2.06	2.921 (9)	132
$\mathrm{OW} 4-\mathrm{H} 4 A \cdots \mathrm{O} 22$	1.11	2.48	3.263 (10)	126
OW4-H4B . ${ }^{\text {O }} 15^{\text {ix }}$	1.19	2.34	3.472 (10)	158
OW5-H5A . . O17 ${ }^{\text {iii }}$	1.23	2.41	3.158 (8)	116
OW5-H5B \ldots OW $3^{\text {iii }}$	1.26	1.97	3.094 (10)	146
OW6-H6A $\cdots \mathrm{O} 23$	0.93	2.09	3.011 (8)	173
OW6-H6B $\cdots \mathrm{O} 18$	1.07	2.18	3.168 (8)	154
OW7-H7A \cdots OW10	1.09	2.31	3.201 (15)	138
OW7-H7B $\cdots \mathrm{O} 44^{\text {iii }}$	1.05	2.26	3.092 (8)	135
OW8-H8A \cdots OW11 ${ }^{\text {x }}$	0.92	2.14	3.009 (14)	158
OW8-H8B . O $4111^{\text {iii }}$	1.11	2.08	3.145 (9)	161
$\mathrm{O} W 9-\mathrm{H} 9 A \cdots \mathrm{O} 310^{\mathrm{x}}$	1.11	1.95	2.786 (9)	129
OW9-H9B $\cdots \mathrm{O} 19$	1.09	2.51	3.465 (11)	147
OW10-H10A \cdots O110	0.92	2.11	2.883 (9)	141
OW10-H10B . . OW7	1.10	2.52	3.201 (15)	120
OW11- $\mathrm{H} 11 A \cdots \mathrm{OW} 8^{\mathrm{x}}$	1.20	2.20	3.009 (14)	122
$\mathrm{O} W 11-\mathrm{H} 11 A \cdots \mathrm{O} 43$	1.20	2.39	3.074 (10)	113
OW11-H11B $\cdots \mathrm{OW} 12{ }^{\text {ii }}$	1.09	2.47	3.316 (13)	133
$\mathrm{OW} 12-\mathrm{H} 12 A \cdots \mathrm{O} 411^{\mathrm{x}}$	1.02	1.95	2.788 (12)	137
$\mathrm{OW} 12-\mathrm{H} 12 A \cdots \mathrm{O} 44^{\mathrm{x}}$	1.02	2.23	3.054 (10)	137
$\mathrm{OW} 12-\mathrm{H} 12 B \cdots \mathrm{O} 43^{\mathrm{x}}$	1.25	1.93	2.975 (11)	137
$\mathrm{OW} 12-\mathrm{H} 12 B \cdots \mathrm{O} 49^{\mathrm{x}}$	1.25	2.03	3.124 (12)	143

Data collection

Philips PW1100 diffractometer updated by Stoe

$$
k=-20 \rightarrow 21
$$ ω / θ scans

$$
l=0 \rightarrow 25
$$

18345 measured reflections
18254 independent reflections 7507 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=30.1^{\circ}$

Refinement

Refinement on F^{2}
H -atom parameters not refined
$R(F)=0.049$
$w R\left(F^{2}\right)=0.106$
$S=0.934$
18254 reflections
907 parameters

$$
h=-16 \rightarrow 17
$$

3 standard reflections frequency: 90 min intensity decay: 24.2%

The crystal chosen for data collection, which was stable in air, slowly decomposed in the X-ray beam, so data were corrected for decay (24%). 83 reflections with $\Delta / \sigma>5$ were excluded from the final stages of refinement. The highest residual peak in the difference Fourier map was located $1.39 \AA$ from Mo42 and $0.79 \AA$ from O48.

Data collection: STADI4 (Stoe \& Cie, 1996); cell refinement: STADI4; data reduction: XRED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLUTON (Spek, 1982) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Ministry of Science and Technology of the Republic of Croatia for financial support (grant No. 119407).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1030). Services for accessing these data are described at the back of the journal.

References

Cotton, F. A. (1965). Inorg. Chem. 4, 334-336.
Cotton, F. A. (1977). J. Less Common Met. 54, 3-12.
Cotton, F. A. \& Morehouse, S. M. (1965). Inorg. Chem. 4, 1377-1381.
James, R. G. \& Wardlaw, W. (1928). J. Chem. Soc. pp. 2743-2757.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kamenar, B., Kaitner, B. \& Strukan, N. (1991). Croat. Chem. Acta, 64, 329-341.
McDonald, W. S. (1978). Acta Cryst. B34, 2850-2853.
Rongsheng, Y. \& Xiufen, Y. (1985). Jiegou Hиaxue (J. Struct. Chem.), 4, 1-5.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1982). Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Spivack, B. \& Dori, Z. (1975). Coord. Chem. Rev. 17, 99-136.
Stoe \& Cie (1996). STADI4 and XRED. Stoe \& Cie, Darmstadt, Germany.

